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Abstract

For Emperor penguins (Aptenodytes forsteri), huddling is the key to survival during the Antarctic winter. Penguins in a
huddle are packed so tightly that individual movements become impossible, reminiscent of a jamming transition in
compacted colloids. It is crucial, however, that the huddle structure is continuously reorganized to give each penguin a
chance to spend sufficient time inside the huddle, compared with time spent on the periphery. Here we show that Emperor
penguins move collectively in a highly coordinated manner to ensure mobility while at the same time keeping the huddle
packed. Every 30–60 seconds, all penguins make small steps that travel as a wave through the entire huddle. Over time,
these small movements lead to large-scale reorganization of the huddle. Our data show that the dynamics of penguin
huddling is governed by intermittency and approach to kinetic arrest in striking analogy with inert non-equilibrium systems,
including soft glasses and colloids.
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Introduction

Emperor penguins are the only vertebrates that breed during

the austral winter where they have to endure temperatures below

245uC and winds of up to 50 m/s while fasting. From their arrival

at the colony until the eggs hatch and the return of their mates, the

males, who solely incubate the eggs, fast for about 110–120 days

[1–3]. To conserve energy and to maintain their body tempera-

ture[4], the penguins aggregate in huddles where ambient

temperatures are above 0uC and can reach up to 37uC [1–3].

Huddling poses an interesting physical problem. If the huddle

density is too low, the penguins lose too much energy. If the

huddle density is too high, internal rearrangement becomes

impossible, and peripheral penguins are prevented to reach the

warmer huddle center. This problem is reminiscent of colloidal

jamming during a fluid-to-solid transition [5]. In this paper we

show that Emperor penguins prevent jamming by a recurring

short-term coordination of their movements.

Materials and Methods

To study positional reorganization processes in a penguin

huddle, we observed a medium-size Emperor penguin colony

(,2000 animals) (Fig 1A, Movie S1) near the Neumayer

Antarctic Research Station (70u39S 8u15W). From an elevated

(12 m), distant (115 m) position, high resolution time lapse

images were recorded every 1.3 sec for a total of 4 h and

analyzed off-line to detect and track penguin positions (Fig 1B).

The air temperatures during the recordings (03. Aug. 2008)

varied from 233 to 243uC with a maximum wind speed of

8.3 m/s. Most penguins carried an egg. We did not observe any

hatched chicks at that time, and the female penguins had not

yet returned to the colony. The minimum distance of the

investigators to the nearest penguins was greater than 100 m at

all times, in accordance with the guidelines of the German

Environmental Protection Agency. No specific ethical review was

required for this study.

Results

Emperor penguins have developed a surprising strategy to

prevent jamming while remaining in a densely packed configura-

tion. As the sun sets and the temperatures drop from 233 to

243uC in the course of the recording, the penguins aggregate in

multiple huddles. For most of the time, these huddles remain

motionless, with the penguins tightly packed. Penguins in any

given huddle face in the same direction, but because of the low

wind speeds during the time of the recording, this direction is not

dictated by the wind direction and differs between huddles [5].

The jammed state of the huddle is interrupted every 30–60 s

by small 5–10 cm steps of the penguins (Fig 1C,1E, Movie S2,

S3), reminiscent of a temporary fluidization [6]. These steps are

also spatially coordinated and travel as a directed wave with a

speed of ,12 cm/s through the entire huddle (Fig. 1E). After the

wave has reached the end of it, the huddle re-enters the jammed

state. Interestingly the propagation speed of the traveling wave is

comparable to the speed of the individual penguins during the

step. This is analogous to the propagation of sound waves in an
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elastic entropic medium (gas or fluid) where typical molecular

velocities are comparable to the velocity of pressure waves.

Discussion

We propose that the small, regular steps serve a three-fold

purpose. First, they help achieve the highest packing density. As

new penguins join the huddle at the periphery, the small steps

compact the huddle similar to the tapping of a bag of loosely

packed granular material. Second, the small steps lead to a

forward motion of the entire huddle. In addition, huddle

movements allow separate smaller huddles to merge into larger

clusters. Such merging is analogous to the merging of magnetic

domains as the thermodynamic temperature is decreased towards

the Curie point, the temperature above which a magnet loses its

magnetism, or analogous to a phase transition in a disordered

material that is brought towards a critical point. This is an essential

process in condensed matter physics, penguins included. In further

support of the phase transition analogy, we note that when the

huddle breaks up, it occurs very rapidly [7], similar to the sharp

jump in densities between e.g. a gas and liquid state. Third, the

small repetitive steps lead over time to a slow macroscopic huddle

reorganization. The nearly hexagonal packing arrangement of

neighboring penguins in the inner region of the huddle is not

disturbed by the traveling wave. In general, individual penguins do

not change their positions relative to their neighbors, and they do

not force their way in or out of a huddle. The time a penguin

spends inside a huddle is determined foremost by the lifetime of

the huddle, typically on the order of hours [5], and to a lesser

degree by a treadmilling-like turnover of penguins that join the

huddle preferentially at the trailing edge and leave the huddle at

the leading edge.

Structural order of penguin positions in the huddle and

coordinated movements arise in unison. A similar transition

from individual to collective motion above a critical density has

also been observed in other biological systems including

marching locusts [8], tissue culture cells [9] and fish schools

[10]. Such behavior resembles the fluid-to-solid gelation of

short-ranged attractive colloids [11]. Gelation results from

kinetic arrest due to crowding, whereby the particle motion is

greatly reduced by the attractive interaction potential and the

surrounding cages formed by the dense neighboring particles. In

analogy, the huddling of penguins is triggered when the

magnitude of the attractive interaction potential increases as

the ambient temperature falls. The intermittent traveling waves

help to speed up the relaxation of the penguin positions within

the huddle towards an equilibrium configuration with hexago-

nal packing.

In this connection, it is noteworthy, first, that the gelation of

weakly attractive colloids is similar to the colloidal glass transition

of repulsive particles at high packing densities [11], and second,

that repulsive interactions in active crowded systems such as

Figure 1. Coordinated movements in an emperor penguin huddle. (A) Observed field of view of the emperor penguin colony. The image
shows several huddles and individual penguins. The density of penguins in huddles is approximately 21 animals per square meter. (B) The penguins’
yellow and white face patch was used to track individual animals. (C) Typical trajectory of a penguin during huddle movements. Motionless periods
are interrupted by intermittent small steps that lead over time to a reorganization of the entire huddle. (D) Positions of penguins tracked over 4 hours
show a collective huddle movement as indicated by red arrows (movies available online). (E) Trajectories from neighboring penguins with similar
vertical (y) positions show correlated steps in the horizontal (x) direction. The speed of the propagating wave is indicated by the slope of the red line.
doi:10.1371/journal.pone.0020260.g001
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humans during an escape panic are often accompanied with

traveling waves [12]. Why these waves are uncoordinated,

turbulent and dangerous in a human crowd but not in a penguin

huddle remains an open question but may possibly depend on the

shape and magnitude of the interaction potential, and on the

distance of the system from an effective temperature characteriz-

ing a critical point. It is also unclear whether the traveling wave in

a huddle is triggered by a single or few leading penguins and

follows a well-defined hierarchy among group members, similar to

the collective behavior in pigeon flocks [13,14]. Modeling attempts

with self-driven agents have explained collective behavior such as

temporal and long-range spatial synchronization in bird flocks, fish

schools or traffic congestion by evolutionary strategies and a small

set of simple interaction rules between neighboring agents [15–

20]. Similar mechanisms may also apply to the collective behavior

of penguins in a huddle.

Taken together, these questions and observations link integra-

tive biological functions to the macroscale dynamics of the

underlying elements, and represent an unexpected intersec-

tion of topical issues in condensed matter physics and systems

biology [21].

Supporting Information

Movie S1 Huddle formation and occurrence of coordi-
nated traveling waves. Time lapse recordings (full field of view)

over 2 h (resolution reduced from 10 MP to 480 p), showing about

half of the penguin colony during the aggregation and huddling

process. At the beginning of the movie (,12 p.m. with

temperatures above 235uC), only few penguins aggregated in

smaller huddles. As the temperatures gradually fell, larger and

more stable huddles formed until nearly all the penguins

aggregated in one large huddle.

(MP4)

Movie S2 Huddle formation and occurrence of coordi-
nated traveling waves (detail). Time-lapse recordings (detail

of S2 over 1 h) showing multiple huddles. The penguins in a

huddle mostly face in the same direction which defines a rear end

and a front end of the huddle. When a penguin joins the huddle, it

does so by aligning itself first in the direction in which the other

penguins are facing, and then moving closer to the huddle. As a

result, penguins tend to join a huddle at its rear (trailing) end and

leave it at the front (leading) end. During the periodic traveling

wave, the huddles move in the forward direction (in the direction

in which the majority of the penguins are facing).

(MP4)

Movie S3 Coordinated traveling waves in a densely
packed huddle. 21 min sequence from S2 (detail corresponding

to Fig. 1B) at reduced speed. The movie shows the travelling wave

of small steps every 30–60 sec.

(MP4)
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